Bifurcation of Low Reynolds Number Flows in Symmetric Channels
نویسندگان
چکیده
The ow elds in two-dimensional channels with discontinuous expansions are studied numerically to understand how the channel expansion ratio in uences the symmetric and non-symmetric solutions that are known to occur. For improved con dence and understanding, two distinct numerical techniques are used. The general ow eld characteristics in both symmetric and asymmetric regimes are ascertained by a time-marching nite volume procedure. The ow elds and the bifurcation structure of the steady solutions of the Navier-Stokes equations are determined independently using the nite-element technique. The two procedures are then compared both as to their predicted critical Reynolds numbers and the resulting ow eld characteristics. Following this, both numerical procedures are compared with experiments. The results show that the critical Reynolds number decreases with increasing channel expansion ratio. At a xed supercritical Reynolds number, the location at which the jet rst impinges on the channel wall grows linearly with the expansion ratio.
منابع مشابه
Numerical Analysis of Fully Developed Flow and Heat Transfer in Channels with Periodically Grooved Parts (TECHNICAL NOTE)
To obtain a higher heat transfer in the low Reynolds number flows, wavy channels are often employed in myriad engineering applications. In this study, the geometry of grooves shapes is parameterized by means of four angles. By changing these parameters new geometries are generated and numerical simulations are carried out for internal fully developed flow and heat transfer. Results are compared...
متن کاملBifurcations of Flow Through Plane Symmetric Channel Contraction
Computational investigations have been performed into the behavior of an incompressible fluid flow in the vicinity of a plane symmetric channel contraction. Our aim is to determine the critical Reynolds number, above which the flow becomes asymmetric with respect to the channel geometry using the bifurcation diagram. Three channels, which are characterized by the contraction ratio, are studied ...
متن کاملA New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows
A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...
متن کاملAsymmetric flows of viscoelastic fluids in symmetric planar expansion geometries
The flow of viscoelastic liquids with constant shear viscosity through symmetric sudden expansions is studied by numerical means. The geometry considered is planar and the constitutive model follows the modified FENE-CR equation, valid for relative dilute solutions of polymeric fluids. For Newtonian liquids in a 1:3 expansion we predict the result that the flow becomes asymmetric for a Reynolds...
متن کاملAxi-symmetric Stagnation–Point Flow and Heat Transfer Obliquely Impinging on a Rotating Circular Cylinder
Laminar stagnation flow, axi-symmetrically yet obliquely impinging on a rotating circular cylinder, as well as its heat transfer is formulated as an exact solution of the Navier-Stokes equations. Rotational velocity of the cylinder is time-dependent while the surface transpiration is uniform and steady. The impinging stream is composed of a rotational axial flow superposed onto irrotational rad...
متن کامل